Echinoderm bonanza

Smith et al. (2013) has been sitting on my desktop waiting to be read for the last month or so. Man, am I glad that I finally opened the thing. I’m quite fond of echinoderms, and this paper is full of them. Of course. It’s about echinoderms. Specifically, it’s about the diverse menagerie of them that existed, it seems, a little bit earlier than thought.

The brief little paper introduces new echinoderm finds from two Mid-Cambrian formations in Morocco, which at the time was part of the great continent of Gondwana. As far as I’m concerned, it was worth reading just for this lineup of Cambrian echinoderms. I mean, echinoderms are so amazingly weird in such a variety of ways. They’re a delight.


(The drawings themselves are from Fig. 3. of the paper; I rearranged them to fit into my post width, and the boxes are my additions. Dark box = new groups/species from Morocco, light grey box = known groups/species whose first appearance was pushed back in time by the Moroccan finds.)

Although none of the creatures above belong to the living classes of echinoderms, they display a wide range of body plans. You could say their body plans are more diverse* than those of living echinoderms. (And if you said that, the ghost of Stephen Jay Gould would nod approvingly.) For example, modern echinoderms tend to have either (usually five-part) radial symmetry (any old starfish) or bilateral symmetry that clearly comes from radial symmetry (heart urchins).

In these Early- to Mid-Cambrian varieties, you can see some five-rayed creatures, some that are more or less bilateral without any obvious connection to the prototypical five-point star, animals that are just kind of asymmetric, and those strange spindle-shaped helicoplacoids that look like someone took an animal with radial symmetry and wrung it out. And then there are all the various arrangements of arms and stalks and armour plates that I tend to gloss over when reading about the beasts. (Yeah. I have no attention span.)

The Morroccan finds have some very interesting highlights. The second creature in the lineup above is one of them. Its top half looks like a helicoplacoid such as Helicoplacus itself (first drawing). It’s got that characteristic spiral arrangement of plates and a mouth at the top end. However, unlike previously known helicoplacoids, it sits on a stalk that resembles the radially-symmetric eocrinoids (like the creature on its right). It’s a transitional form all right, though we’ll have to wait for future publications and perhaps future discoveries to see which way evolution actually went. It’ll already help palaeontologists make sense of helicoplacoids themselves, though, which I gather is a big thing in itself. The authors promise to publish a proper description of the creature, which is really exciting.

The other exciting thing about the Moroccan echinoderms is their age. As I already hinted at with my grey boxes, the new fossils push back the known time range of many echinoderm body plans by millions of years. This means that the wide variety of body plans we saw above was already present as little as 10-15 million years after the first appearance of scattered bits of echinoderm skeleton in the fossil record.

Smith et al. argue that this is a fairly solid conclusion based on the mineralogy of echinoderm skeletons. Organisms with calcium carbonate hard parts have a tendency to adopt the “easiest” mineralogy at the time they first evolve skeletons. Seawater composition changes over geological time; most importantly, the ratio of calcium to magnesium fluctuates. Calcium carbonate can adopt several different crystal forms, and the Ca/Mg ratio influences which of them are easier to make. So when there’s a lot of Mg in the sea, aragonite is the “natural” choice, whereas low Mg levels favour calcite.

The first appearance of echinoderms around 525 million years ago coincides with a shift in ocean chemistry from “aragonite seas” to “calcite seas”. Echinoderms and a bunch of other groups that first show up around that time have skeletons that are calcite in their structure but incorporate a lot of Mg. Since the ocean before was favourable to aragonite, it’s unlikely that echinoderm skeletons appeared much earlier than this date. In other words, echinoderm evolution during this geologically short period was truly worthy of the name “Cambrian explosion”.

That is, of course, if the appearance of echinoderm skeletons precedes the appearance of echinoderm body plans. The oldest of our Cambrian treasure troves of soft-bodied fossils, such as the rocks that yielded the Chengjiang biota of China, are roughly the same age as the first echinoderm skeletons. However, they don’t contain undisputed echinoderms as far as I can tell (Clausen et al., 2010). Proposed “echinoderms” from before the Cambrian are even less accepted. Of course, the unique structure of echinoderm skeletons is easy to recognise, but how do you identify an echinoderm ancestor without such a skeleton? (Is all that bodyplan diversity even possible without hard skeletal support?)

Caveats aside, this Moroccan stuff is awesome. And also, if my caveat proves overly cautious, echinoderms did some serious evolving in their first few million years on earth. A supersonic ride with Macroevolution Airlines?


*OK, if I want to be absolutely pedantic, and I do, then body plans are disparate rather than diverse. “Disparity” in palaeontological/evo-devo parlance refers to how different two or more creatures are. Diversity means how many different creatures there are. Maybe I should do a post on that, actually.



Clausen S et al. (2010) The absence of echinoderms from the Lower Cambrian Chengjiang fauna of China: Palaeoecological and palaeogeographical implications. Palaeogeography, Palaeoclimatology, Palaeoecology 294:133-141

Smith AB et al. (2013) The oldest echinoderm faunas from Gondwana show that echinoderm body plan diversification was rapid. Nature Communications 4:1385


2 thoughts on “Echinoderm bonanza

Chime in!

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s