Fifty thousand generations, still improving

I take all my hats off to Richard Lenski and his team. If you’ve never heard of them, they are the group that has been running an evolution experiment with E. coli bacteria non-stop for the last 25 years. That’s over 50 000 generations of the little creatures; in human generations, that translates to ~1.5 million years. This experiment has to be one of the most amazing things that ever happened in evolutionary biology.

(Below: photograph of flasks containing the twelve experimental populations on 25 June 2008. The flask labelled A-3 is cloudier than the others: this is a very special population. Photo by Brian Baer and Neerja Hajela, via Wikimedia Commons.)

It doesn’t necessarily take many generations to see some mind-blowing things in evolution. An irreducibly complex new protein interaction (Meyer et al., 2012), the beginnings of new species and a simple form of multicellularity (Boraas et al., 1998) are only a few examples. However, a few generations only show tiny snapshots of the evolutionary process. Letting a population evolve for thousands of generations allows you to directly witness processes that you’d normally have to glean from the fossil record or from studies of their end products.

Fifty thousand generations, for example, can tell you that they aren’t nearly enough time to reach the limit of adaptation. The newest fruit of the Long-Term Evolution Experiment is a short paper examining the improvement in fitness the bacteria experienced over its 25 years (Wiser et al., 2013). “Fitness” is measured here as growth rate relative to the ancestral strain; the faster the bacteria are able to grow in the environment of the LTEE (which has a limited amount of glucose, E. coli‘s favourite food), the fitter they are. The LTEE follows twelve populations, all from the same ancestor, evolving in parallel, so it can also determine whether something that happens to one population is a chance occurrence or a general feature of evolution.

You can draw up a plot of fitness over time for one or more populations, and then fit mathematical models to this plot. Earlier in the experiment, the group found that a simple model in which adaptation slows down over time and eventually grinds to a halt fits the data well. However, that isn’t the only promising model. Another one predicts that adaptation only slows, never stops. Now, the experiment has been running long enough to distinguish between the two, and the second one wins hands down. Thus far, even though they’ve had plenty of time to adapt to their unchanging environment, the Lenski group’s E. coli just keep getting better at living there.

Although the simple mathematical function that describes the behaviour of these populations doesn’t really explain what’s happening behind the scenes, the team was also able to reproduce the same behaviour by building a model from known evolutionary phenomena. For example, they incorporated the idea that two bacteria with two different beneficial mutations in the same bottle are going to compete and slow down overall adaptation. (This is a problem of asexual organisms. If the creatures were, say, animals, they might have sex and spread both mutations at the same time.) So the original model doesn’t just describe the data well, it also follows from sensible theory. So did the observation that the populations which evolved higher mutation rates adapted faster.

Now, one of the first things you learn about interpreting models is that extrapolating beyond your data is dangerous. Trends can’t go on forever. In this case, you’d eventually end up with bacteria that reproduced infinitely fast, which is clearly ridiculous. However, Wiser et al. suggest that the point were their trend gets ridiculous is very, very far in the future. “The 50,000 generations studied here occurred in one scientist’s laboratory in ~21 years,” they remind us, then continue: “Now imagine that the experiment continues for 50,000 generations of scientists, each overseeing 50,000 bacterial generations, for 2.5 billion generations total.”

If the current trend continues unchanged, they estimate that the bugs at that faraway time point will be able to divide roughly every 23 minutes, compared to 55 minutes for the ancestral strain. That is still a totally realistic growth rate for a happy bacterium!

I know none of us will live to see it, but I really want to know what would happen to these little guys in 2.5 billion generations…

***

References:

Boraas ME et al. (1998) Phagotrophy by a flagellate selects for colonial prey: a possible origin of multicellularity. Evolutionary Ecology 12:153-164

Meyer JR et al. (2012) Repeatability and contingency in the evolution of a key innovation in phage lambda. Science 335:428-432

Wiser MJ et al. (2013) Long-term dynamics of adaptation in asexual populations. Science, published online 14/11/2013, doi: 10.1126/science.1243357

Advertisements

2 thoughts on “Fifty thousand generations, still improving

  1. Joseph Grice November 16, 2013 / 21:50

    Hello from another (very ashamed to say, not-quite-as-geeky) evo-devo geek.

    I was drawn here by the almighty google, because I was looking up papers showing hox clusters in different vertebrates to explain to a new PhD why fish are so screwed up. Amongst the papers I’d already seen your blog post about hox clusters and lampreys popped up. I was delighted to say the least (not just because you reference the lamprey genome paper that my supervisor was an author on).

    First of all, you are incredibly intelligent (as you probably know) and also fantastically well read. I think I need to start reading (and thinking) as much as you do. Second of all, I hope that one day I find myself as passionate about my field as you are. Finally, you are hilarious.

    Your enthusiasm is nothing short of inspirational.

    • Naraoia November 17, 2013 / 21:23

      *blushes*

Chime in!

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s