About X-frogs and failing at regeneration

Not the usual mad squee, but here’s a neat little system for studying regeneration that I quite liked today. I normally think about regeneration in terms of amputated limbs, mutilated hearts, decapitated flatworms. But you can induce a kind of “regeneration” in a less drastic and rather more tricksy way, at least in some animals. In newts and salamanders, you can create a small, superficial wound on the side of a limb, then manipulate a nearby nerve into it and add some skin from the other side of the limb.

The poor hurt limb then decides you’ve actually cut something off and tells the wound to grow a new limb. If you don’t add skin, regeneration begins but doesn’t progress very far; if you don’t add a nerve, nothing happens. IIRC you can also make extra heads in some worms in a similar way, but I digress. The figure below from Endo et al. (2004) illustrates just how well the procedure can work. The top row shows stages in the development of the extra limb, while D shows the stained skeletons of the original and new limbs. I’d say that’s a pretty good looking forearm and hand!



That this trick works is in itself a very interesting insight into the nature of regeneration, as it helps us figure out exactly what it is that triggers various steps of regeneration as opposed to a simple healing process (Endo et al., 2004).

Clawed frogs (Xenopus) have been staples of embryology for a long time, but they are also quite fascinating from a regeneration point of view. One, they can regrow their limbs while they are tadpoles, but mostly lose the ability as they mature. They also have a really weird thing going on with their tadpole tails, which they can regenerate early on, then can’t, then can again (Slack et al., 2004). Huh? O.o

Two, their adult limb regeneration ability is not totally absent: it’s somewhere between salamanders’ (oh, whatever, fine, I can do that!) and ours (uh… as long as I’m a baby and it’s just a fingertip?). In a frog, an amputated arm or leg doesn’t simply heal over, but the… thing that grows out of the stump is just a simple cartilaginous spike with no joints or muscles. It’s as if the system was trying very hard to remember how to form a limb but kind of got distracted.

We are obviously interested in creating superhumans with mad regeneration skillz, which also makes us interested in how and why animals lose this seemingly very useful ability*. (Bely (2010) wrote a lovely piece on this not at all simple question.) So: Xenopus yay!

Now, Mitogawa et al. (2014) have devised a skin wound + nerve deviation system to grow little extra limb buds in adult frogs. As you might expect, it doesn’t work nearly as well as it does in axolotls: you need three nerves rather than one, and it only induces a bud about half the time, but it works well enough for research purposes.

The bud (technically, a blastema when you’re talking about regeneration) looks like a good regeneration blastema: it’s got the seemingly undifferentiated cells inside, it’s got the thickened epidermis at the tip that teams up with the nerves to give developmental instructions to the rest of the thing, and it expresses a whole bunch of genes that are turned on in normal limb blastemas.

(Totally random aside: thanks to Chrome’s spell checker, I have discovered that “blastema” is an anagram for “lambaste”.)

One area where this blastema-by-trickery fails is making cartilage, which is one of the few proper limb things the defective spike regenerates in frogs do contain. There’s no simple way of coaxing a complete spike out of these blastemas. The researchers tried the skin graft thing from axolotls (which can already form cartilage without the skin graft), but they still only got a little blastema with no cartilage. To get a skeleton, however crappy,  you need to cut out muscles and crack the underlying bone, which kind of defeats the purpose of the whole exercise IMO. At that point, you might as well just chop off the arm.

Below: the best a frog can do. Development of blastema-like bumps and “spike limbs” on the upper arm from Mitogawa et al. (2014). Compared to the fully formed accessory limbs of axolotls, the things you can see in B-D here are not terribly impressive, but they may be just the “transitional form” we need!

The failure of skin grafts alone at inducing cartilage, however, does hint at the things that go wrong with regeneration in frogs. Mitogawa et al. speculate that newt and axolotl limbs produce factors that frogs can only get from damaged bone. Broken bones even in us form a cartilaginous callus as they begin to heal, and unlike the cartilage in the extra limbs of axolotls, the cartilage in frog spikes is directly attached to the underlying bone.

They also point out that if you add proteins called BMPs to amputated mouse arms, which are otherwise even shitter at regeneration than frog arms, a surprising amount of bone formation occurs. (“BMP” stands for bone morphogenetic protein, which is a big clue to their function.) So it looks like there may be a kind of regeneration gradient from mammals (need bone damage AND extra BMP), through frogs (need bone damage, take care of BMPs themselves) to salamanders (don’t need either).

I should point out that salamanders and frogs are equally closely related to us, so this isn’t a proper evolutionary gradient, but given all the ways in which we and amphibians are fundamentally similar, our loss of regenerative ability may well have evolved through a similar stage to where frogs are now. Neat!

(I just wish they stopped calling us “higher vertebrates”. That phrase annoys me right up the fucking wall, because, and I may have said this before, EVOLUTION IS NOT A GODDAMNED LADDER. The group they are referring to has a perfectly good name that doesn’t imply ladder thinking. Amniotes, people. Or mammals, if you mean mammals, but I think if they’d meant mammals they would have said mammals. End grump.)


*I mean “us” in a very general sense. I think regenerative medicine is the coolest thing in medicine since vaccines and antibiotics, but I personally don’t think that the evolution of regenerative ability needs medical considerations to make it interesting. Whatever. I’m not exactly a practically minded person 😛



Bely AE (2010) Evolutionary loss of animal regeneration: pattern and process. Integrative and Comparative Biology 50:515-527

Endo T et al. (2004) A stepwise model system for limb regeneration. Development 270:135-145

Mitogawa K et al. (2014) Ectopic blastema induction by nerve deviation and skin wounding: a new regeneration model in Xenopus laevis. Regeneration 2:11

Slack JMW et al. (2004) Cellular and molecular mechanisms of regeneration in Xenopus. Philosophical Transactions of the Royal Society B 359:745-751


Chime in!

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s