In which a “living fossil’s” genome delights me

I promised myself I wouldn’t go on for thousands and thousands of words about the Lingula genome paper (I’ve got things to do, and there is a LOT of stuff in there), but I had to indulge myself a little bit. Four or five years ago when I was a final year undergrad trying to figure out things about Hox gene evolution, I would have killed for a complete brachiopod genome. Or even a complete brachiopod Hox cluster. A year or two ago, when I was trying to sweat out something resembling a PhD thesis, I would have killed for some information about the genetics of brachiopod shells that amounted to more than tables of amino acid abundances. Too late for my poor dissertations, but a brachiopod genome is finally sequenced! The paper is right here, completely free (Luo et al., 2015). Yay for labs who can afford open-access publishing!

In case you’re not familiar with Lingula, it’s this guy (image from Wikipedia):

In a classic case of looks being deceiving, it’s not a mollusc, although it does look a bit like one except for the weird white stalk sticking out of the back of its shell. Brachiopods, the phylum to which Lingula belongs, are one of those strange groups no one really knows where to place, although nowadays we are pretty sure they are somewhere in the general vicinity of molluscs, annelid worms and their ilk. Unlike bivalve molluscs, whose shell valves are on the left and right sides of the animal, the shells of brachiopods like Lingula have top and bottom valves. Lingula‘s shell is also made of different materials: while bivalve shells contain calcium carbonate deposited into a mesh of chitin and silk-like proteins,* the subgroup of brachiopods Lingula belongs to uses calcium phosphate, the same mineral that dominates our bones, and a lot of collagen (again like bone). But we’ll come back to that in a moment…

One of the reasons the Lingula genome is particularly interesting is that Lingula is a classic “living fossil”. In the Paleobiology Database, there’s even an entry for a Cambrian fossil classified as Lingula, and there are plenty of entries from the next geological period. If the database is to be believed, the genus Lingula has existed for something like 500 million years, which must be some kind of record for an animal.** Is its genome similarly conservative? Or did the DNA hiding under a deceptively conservative shell design evolve as quickly as anyone’s?

In a heroic feat of self-control, I’m not spending all night poring over the paper, but I did give a couple of interesting sections a look. Naturally, the first thing I dug out was the Hox cluster hiding in the rather large supplement. This was the first clue that Lingula‘s genome is definitely “living” and not at all a fossil in any sense of the word. If it were, we’d expect one neat string of Hox genes, all in the order we’re used to from other animals. Instead, what we find is two missing genes, one plucked from the middle of the cluster and tacked onto its “front” end, and two genes totally detached from the rest. It’s not too bad as Hox cluster disintegration goes – six out of nine genes are still neatly ordered – but it certainly doesn’t look like something left over from the dawn of animals.

The bigger clue that caught my eye, though, was this little family tree in Figure 2:


The red numbers on each branch indicate the number of gene families that expanded or first appeared in that lineage, and the green numbers are the families shrunk or lost. Note that our “living fossil” takes the lead in both. What I find funny is that it’s miles ahead of not only the animals generally considered “conservative” in terms of genome evolution, like the limpet Lottia and the lancelet Branchiostoma, but also the sea squirt (Ciona). Squirts are notorious for having incredibly fast-evolving genomes; then again, most of that notoriety was based on the crazily divergent sequences and often wildly scrambled order of its genes. A genome can be conservative in some ways and highly innovative in others. In fact, many of the genes involved in basic cellular functions are very slow-evolving in Lingula. (Note also: humans are pretty slow-evolving as far as gene content goes. This is not the first study to find that.)

So, Lingula, living fossil? Not so much.

The last bit I looked at was the section about shell genetics. Although it’s generally foolish to expect the shell-forming gene sets of two animals from different phyla to be similar (see my first footnote), if there are similarities, they could potentially go at least two different ways. First, brachiopods might be quite close to molluscs, which is the hypothesis Luo et al.‘s own treebuilding efforts support. Like molluscs, brachiopods also have a specialised mantle that secretes shell material, though having the same name doesn’t mean the two “mantles” actually share a common origin. So who knows, some molluscan shell proteins, or shell regulatory genes, might show up in Lingula, too.

On the other hand, the composition of Lingula’s shell is more similar to our skeletons’. So, since they have to capture the same mineral, could the brachiopods share some of our skeletal proteins? The answer to both questions seems to be “mostly no”.

Molluscan shell matrix proteins, those that are actually built into the structure of the shell, are quite variable even within Mollusca. It’s probably not surprising, then, that most of the relevant genes that are even present in Lingula are not specific to the mantle, and those that are are the kinds of genes that are generally involved in the handling of calcium or the building of the stuff around cells in all kinds of contexts. Some of the regulatory mechanisms might be shared – Luo et al. report that BMP signalling seems to be going on around the edge of the mantle in baby Lingula, and this cellular signalling system is also involved in molluscan shell formation. Then again, a handful of similar signalling systems “are involved” in bloody everything in animal development, so how much we can deduce from this similarity is anyone’s guess.

As for “bone genes” – the ones that are most characteristically tied to bone are missing (disappointingly or reassuringly, take your pick). The SCPP protein family is so far known only from vertebrates, and its various members are involved in the mineralisation of bones and teeth. SCPPs originate from an ancient protein called SPARC, which seems to be generally present wherever collagen is (IIRC, it’s thought to help collagen fibres arrange themselves correctly). Lingula has a gene for SPARC all right, but nothing remotely resembling an SCPP gene.

I mentioned that the shell of Lingula is built largely on collagen, but it turns out that it isn’t “our” kind of collagen. “Collagen” is just a protein with a particular kind of repetitive sequence. Three amino acids (glycine-proline-something else, in case you’re interested) are repeated ad nauseam in the collagen chain, and these repetitive regions let the protein twist into characteristic rope-like fibres that make collagen such a wonderfully tough basis for connective tissue. Aside from the repeats they all share, collagens are a large and diverse bunch. The ones that form most of the organic matrix in bone contain a non-repetitive and rather easily recognised domain at one end, but when Luo et al. analysed the genome and the proteins extracted from the Lingula shell, they found that none of the shell collagens possessed this domain. Instead, most of them had EGF domains, which are pretty widespread in all kinds of extracellular proteins. Based on the genome sequence, Lingula has a whole little cluster of these collagens-with-EGF-domains that probably originated from brachiopod-specific gene duplications.

So, to recap: Lingula is not as conservative as its looks would suggest (never judge a living fossil by its cover, right?) We also finally have actual sequences for lots of its shell proteins, which reveal that when it comes to building shells, Lingula does its own thing. Not much of a surprise, but still, knowing is a damn sight better than thinkin’ it’s probably so. We are scientists here, or what.

I am Very Pleased with this genome. (I just wish it was published five years ago 😛 )



*This, interestingly, doesn’t seem to be the general case for all molluscs. Jackson et al. (2010) compared the genes building the pearly layer of snail (abalone, to be precise) and bivalve (pearl oyster) shells, and found that the snail showed no sign of the chitin-making enzymes and silk type proteins that were so abundant in its bivalved cousins. It appears that even within molluscs, different groups have found different ways to make often very similar shell structures. However, all molluscs shells regardless of the underlying genetics are predominantly composed of calcium carbonate.

**You often hear about sharks, or crocodiles, or coelacanths, existing “unchanged” for 100 or 200 or whatever million years, but in reality, 200-million-year-old crocodiles aren’t even classified in the same families, let alone the same genera, as any of the living species. Again, the living coelacanth is distinct enough from its relatives in the Cretaceous, when they were last seen, to warrant its own genus in the eyes of taxonomists. I’ve no time to check up on sharks, but I’m willing to bet the situation is similar. Whether Lingula‘s jaw-dropping 500-million-year tenure on earth is a result of taxonomic lumping or the shells genuinely looking that similar, I don’t know. Anyway, rant over.



Jackson DJ et al. (2010) Parallel evolution of nacre building gene sets in molluscs. Molecular Biology and Evolution 27:591-608

Luo Y-J et al. (2015) The Lingula genome provides insights into brachiopod evolution and the origin of phosphate biomineralization. Nature Communications 6:8301

The things you can tell from a pile of corpses…

I’m really late to this party, but I never claimed to be timely, and the thing about the reproductive habits of Fractofusus is too interesting not to cover.* Rangeomorphs  like Fractofusus are really odd creatures. They lived in that Ediacaran twilight zone between older Precambrian seas devoid of macroscopic animals and younger Cambrian seas teeming with recognisable members of modern groups. Rangeomorphs such as RangeaCharnia and Fractofusus itself have such a unique fractal body plan (Narbonne, 2004) that no one really knows what they are. Although they were probably not photosynthetic like plants or algae (they are abundant in deep sea sediments where there wouldn’t have been enough light), their odd body architectures are equally difficult to compare to any animal that we know.

Mitchell et al. (2015) don’t bring us any closer to the solution of that mystery; they do, however, use the ultimate power of Maths to deduce how the enigmatic creatures might have reproduced. Fractofusus is an oval-shaped thingy that could be anywhere from 1 cm to over 40 cm in length. Unlike some other rangeomorphs, it lay flat on the seafloor with no holdfasts or stalks to be seen. Fractofusus fossils are very common in the Ediacaran deposits of Newfoundland. Since there are so many of them, and there is no evidence that they were capable of movement in life, the researchers figured their spatial distribution might offer some clues as to their reproductive habits. A bit of seafloor covered in Fractofusus might look something like this (drawing from the paper):

clusters within clusters

(The lines between individuals don’t actually come from the fossils, they just represent the putative connection between a parent and its babies.)

Statistical models suggest that the fossils are not randomly distributed but clearly clustered: small specimens around medium-sized ones, which are in turn gathered around the big guys. Two out of three populations examined show these clusters-within-clusters; the third has only one layer of clustering, but it’s still far from random. As the authors note, the real populations they studied involve a lot more specimens than shown in the diagram, but they “rarefied” them a bit for clarity of illustration while keeping their general arrangement.

The study looked not only at the distances between small, medium and large specimens, but also directions – both of where the specimens were and which way they pointed. If young Fractofusus spread by floating on the waves, they’d be influenced by currents in the area. It seems the largest specimens were – they are unevenly distributed in different directions. In contrast, smaller individuals were clustered around the bigger ones without regard to direction. Small and large specimens alike pointed randomly every which way.

What does this tell us about reproduction? The authors conclude that the big specimens probably arrived on the current as waterborne youngsters, hence their arrangement along particular lines . However, once there, they must have colonised their new home in a way that doesn’t involve currents. Mitchell et al. think that way was probably stolons – tendrils that grew out from the parent and sprouted a new individual at the end. This idea is further strengthened by the fact that among thousands of specimens, not a single one shows evidence for other types of clonal reproduction – no fragments, and no budding individuals, are known. (Plus if a completely sessile organism fragments, surely the only way the pieces could spread anywhere would be by riding currents, and that would show up in their distribution.)

Naturally, none of this tells us whether Fractofusus was an animal, a fungus or something else entirely. Sending out runners is not a privilege of a particular group, and while there is evidence that the original founders of the studied populations came from far away on the waves, we have no idea what it was that floated in to take root in those pieces of ancient seafloor. Was it a larva? A spore? A small piece of adult tissue? Damned if we know. Despite what Wikipedia and news headlines would have you believe, there is nothing to suggest that sex was involved. It may have been, but the evidence is silent on that count. (Annoyingly, the news articles themselves acknowledge that. Fuck headlines is all I’m saying…)

While sometimes we gain insights into ancient reproductive habits via spectacular fossils like brooding dinosaurs or pregnant ichthyosaurs, this study is a nice reminder that in some cases, a lot can be deduced even in the absence of such blatant evidence. This was an interesting little piece of Precambrian ecology, and a few remarks in the paper suggest more to come: “Other taxa exhibit an intriguing range of non-random habits,” the penultimate paragraph says, “and our preliminary analyses indicate that Primocandelabrum and Charniodiscus may have also reproduced using stolons.”

An intriguing range of non-random habits? No citations? I wanna know what’s brewing!


*Also, I’ve got to write something so I can pat myself on the back for actually achieving something beyond getting out of bed. Let’s just say Real Life sucks, depression sucks worse, and leave it at that.



Mitchell EG et al. (2015) Reconstructing the reproductive mode of an Ediacaran macro-organism. Nature 524:343-346

Narbonne GM (2004) Modular construction of Early Ediacaran complex life forms. Science 305:1141-1144