Random of the day

Because productivity is too much effort. In my defence, it was paper writing-related curiosity that led me to Wikipedia, where I found this electron microscope image of a broken piece of mother of pearl/nacre by Fabian Heinemann. (In case you wondered, I wanted to check roughly how big nacre tablets were. And no, Wikipedia is not my only source for this ;)) So: this is what mother of pearl looks like when you zoom in a few thousand times.

Nacre is made of little tablets of aragonite stacked on top of one another and separated by sheets of organic matter. The way the tablets scatter light is what gives pearls their pretty, pretty shine.

(I have a thing for electron micrographs of biominerals. Actually, I’m a big fan of close-up images of pretty much anything. It’s like looking into the secret heart of things.)

Take two

So, the post that WordPress ate earlier today was me squealing like a tween over some baby worms. Specifically, these ones (Gibson and Paterson, 2003):


Don’t you just want to cuddle them?

The adorable little slug-creatures with their cute little dot eyes are the larvae of a small polychaete worm called Amphipolydora vestalis. The adult worms build muddy tubes inside some poor unfortunate sponge in the waters of New Zealand (Paterson and Gibson, 2003). Females lay their eggs in an egg capsule within the tube, and add some extra eggs filled with yolk for the babies’ nourishment (Gibson and Paterson, 2003). The larvae in these pictures are about a week old, and they are bulging with all that yummy egg stuff they’ve been eating.

By the time they hatch from the capsule and leave to set up their own tube, they no longer look morbidly obese (or all that cute), and appear more like a weird alien species with four eyes in a row, hairy “legs” everywhere, and a pair of nice long tentacle things (technically “palps”) sprouting off their heads. These worms and others of the spionid family use the palps to collect tiny food particles (image from Gibson and Paterson [2003]):


They eventually grow up into something like this (Hans Hillewaert, Wiki Commons):

(This is a related species; good photos of adult Amphipolydora are kind of non-existent.)

Did I mention I love polychaetes? (Not that I work on one or anything…)



Gibson GD & Paterson IG (2003) Morphogenesis during sexual and asexual reproduction in Amphipolydora vestalis (Polychaeta: Spionidae). New Zealand Journal of Marine and Freshwater Research 37:741-752

Paterson IG & Gibson GD (2003) A new species of Amphipolydora (Polychaeta: Spionidae) from New Zealand. New Zealand Journal of Marine and Freshwater Research 37:733-740

Living jellyfish =/= earliest stage in metazoan evolution…

So, admittedly, I wasn’t interested enough in Bielecki et al. (2013) to read the whole thing. But if the abstract is an accurate reflection of their reasoning, then “WTF” is an accurate reflection of my reaction.

The reason I went to have a look at this shiny new PLoS paper is that it was titled “Fixational Eye Movements in the Earliest Stage of Metazoan Evolution”. Anything to do with early metazoan evolution automatically interests me, plus my immediate reaction was to ask how the hell they discovered any kind of eye movement in the earliest animals (which have been, you know, dead for like 600 million years).

Turns out they didn’t. Turns out all they found was that the rhythmic contraction of a box jelly‘s bell keeps the image in its eyes changing so they don’t go blind from photoreceptor fatigue. We accomplish the same effect by constantly moving our eyes (though apparently that’s more for the brain getting bored than photoreceptors burning out?), but the jellies supposedly don’t have the same level of nervous and muscular control over their eyeballs.

Yes, box jellies have frickin’ amazing eyes, complete with lenses. In fact, they have 4 sets of 6 eyes, two of the six being proper camera eyes and the other four much simpler. They can use their eyes to navigate around obstacles and stuff. They are pretty cool creatures. Here’s a box jelly eye cluster (rhopalium) in its full glory from the UCMP:

(Was that just a little bit unsettling? :D)

But these complex, image-forming eyes are an innovation of box jellies. No other cnidarian – in fact, no other animal outside the Bilateria – has them. So complex eyes and good vision are examples of convergent (or should I say parallel?*) evolution, not inheritance from a common ancestor. Conversely, bilaterians don’t have bells like jellyfish, so anything they do to move their eyes has to be an independent invention from the get-go.

So, while box jellies are awesome and it’s always cool to learn more about them, I’m not sure what profound insight about animal evolution we are supposed to find here. That animals with eyes have ways of avoiding visual fatigue? Well, duh. Of course they would, it’s really useful. But I’m not even sure the pulsation of a jellyfish should be regarded as a vision-enhancing adaptation, never mind an adaptation with any relation to what we do. To me it seems like the default way a jelly moves just happens to be good at keeping its eyes entertained. Evolution doesn’t have to do anything special about it.

Of course, the whole thing is soaked with that grandmother of evolutionary misconceptions, exemplified by this quote from the introduction:

Cnidarians were the first of the extant metazoan phyla to develop a nervous system which is therefore considered close to the evolutionary origin of all nervous systems [9].

Nooooooo, for the love of hungry anomalocaridids, don’t do this to me.

Cnidarians and bilaterians shared a common ancestor with a nervous system. Never mind “phyla” – phyla are arbitrary lines humans drew around the branches of the phylogenetic tree. Our ancestors and theirs had nervous systems for the exact same length of time. Neither of us was “first”. Life is a tree, not a goddamned ladder.

Well, at least we got to look at some disembodied jellyfish eyes. Yay!

*goes away to growl quietly*


*The difference being that parallel evolution is convergence  from a common starting point. While complex eyes are clearly later inventions, the common ancestor of cnidarians and bilaterians might well have possessed simple eyespots of some sort, providing said common starting point. But we’re getting pedantic here.



Bielecki J et al. (2013) Fixational eye movements in the earliest stage of metazoan evolution. PLoS ONE 8:e66442

Postcard from crazyland

Contrary to all appearances, this is completely real. O.O


What you are looking at is the fluorescently stained muscles of a phoronid larva. (Phoronids are one of the zillion variations on “tentacled filter feeder sitting in a tube” nature has come up with. They are related to lamp shells.) I couldn’t care less about larval muscles – not even sure why I opened the paper – but that looks friggin’ awesome. And a bit psychedelic.

(Source: Temereva & Tsitrin (2013), BMC Developmental Biology 13:14)

Jelly babies, dead and pretty

Is it really, really wrong to find pictures of dead baby animals adorable?

OK, the animals in question are sea anemones and jellyfish, but I still feel kind of perverted for the sentiment. But seriously, look at this young polyp of a starlet sea anemone (stained blue because the point of this image was the expression of the muscleLIM2 gene, not the cuteness of the creature ;)):


It looks like a little slug! D’awwww!

(I think I may be reading too much Featured Creature… ^.^;)

And then there’s this baby jellyfish, with fluorescent stains for actin protein and cell nuclei…


… or a field full of poppies, depending on your point of view! 😀

[Both images are from the supplementary figures of Steinmetz et al. (2012), Nature 487:231-234.]

Echinoderm bonanza

Smith et al. (2013) has been sitting on my desktop waiting to be read for the last month or so. Man, am I glad that I finally opened the thing. I’m quite fond of echinoderms, and this paper is full of them. Of course. It’s about echinoderms. Specifically, it’s about the diverse menagerie of them that existed, it seems, a little bit earlier than thought.

The brief little paper introduces new echinoderm finds from two Mid-Cambrian formations in Morocco, which at the time was part of the great continent of Gondwana. As far as I’m concerned, it was worth reading just for this lineup of Cambrian echinoderms. I mean, echinoderms are so amazingly weird in such a variety of ways. They’re a delight.


(The drawings themselves are from Fig. 3. of the paper; I rearranged them to fit into my post width, and the boxes are my additions. Dark box = new groups/species from Morocco, light grey box = known groups/species whose first appearance was pushed back in time by the Moroccan finds.)

Although none of the creatures above belong to the living classes of echinoderms, they display a wide range of body plans. You could say their body plans are more diverse* than those of living echinoderms. (And if you said that, the ghost of Stephen Jay Gould would nod approvingly.) For example, modern echinoderms tend to have either (usually five-part) radial symmetry (any old starfish) or bilateral symmetry that clearly comes from radial symmetry (heart urchins).

In these Early- to Mid-Cambrian varieties, you can see some five-rayed creatures, some that are more or less bilateral without any obvious connection to the prototypical five-point star, animals that are just kind of asymmetric, and those strange spindle-shaped helicoplacoids that look like someone took an animal with radial symmetry and wrung it out. And then there are all the various arrangements of arms and stalks and armour plates that I tend to gloss over when reading about the beasts. (Yeah. I have no attention span.)

The Morroccan finds have some very interesting highlights. The second creature in the lineup above is one of them. Its top half looks like a helicoplacoid such as Helicoplacus itself (first drawing). It’s got that characteristic spiral arrangement of plates and a mouth at the top end. However, unlike previously known helicoplacoids, it sits on a stalk that resembles the radially-symmetric eocrinoids (like the creature on its right). It’s a transitional form all right, though we’ll have to wait for future publications and perhaps future discoveries to see which way evolution actually went. It’ll already help palaeontologists make sense of helicoplacoids themselves, though, which I gather is a big thing in itself. The authors promise to publish a proper description of the creature, which is really exciting.

The other exciting thing about the Moroccan echinoderms is their age. As I already hinted at with my grey boxes, the new fossils push back the known time range of many echinoderm body plans by millions of years. This means that the wide variety of body plans we saw above was already present as little as 10-15 million years after the first appearance of scattered bits of echinoderm skeleton in the fossil record.

Smith et al. argue that this is a fairly solid conclusion based on the mineralogy of echinoderm skeletons. Organisms with calcium carbonate hard parts have a tendency to adopt the “easiest” mineralogy at the time they first evolve skeletons. Seawater composition changes over geological time; most importantly, the ratio of calcium to magnesium fluctuates. Calcium carbonate can adopt several different crystal forms, and the Ca/Mg ratio influences which of them are easier to make. So when there’s a lot of Mg in the sea, aragonite is the “natural” choice, whereas low Mg levels favour calcite.

The first appearance of echinoderms around 525 million years ago coincides with a shift in ocean chemistry from “aragonite seas” to “calcite seas”. Echinoderms and a bunch of other groups that first show up around that time have skeletons that are calcite in their structure but incorporate a lot of Mg. Since the ocean before was favourable to aragonite, it’s unlikely that echinoderm skeletons appeared much earlier than this date. In other words, echinoderm evolution during this geologically short period was truly worthy of the name “Cambrian explosion”.

That is, of course, if the appearance of echinoderm skeletons precedes the appearance of echinoderm body plans. The oldest of our Cambrian treasure troves of soft-bodied fossils, such as the rocks that yielded the Chengjiang biota of China, are roughly the same age as the first echinoderm skeletons. However, they don’t contain undisputed echinoderms as far as I can tell (Clausen et al., 2010). Proposed “echinoderms” from before the Cambrian are even less accepted. Of course, the unique structure of echinoderm skeletons is easy to recognise, but how do you identify an echinoderm ancestor without such a skeleton? (Is all that bodyplan diversity even possible without hard skeletal support?)

Caveats aside, this Moroccan stuff is awesome. And also, if my caveat proves overly cautious, echinoderms did some serious evolving in their first few million years on earth. A supersonic ride with Macroevolution Airlines?


*OK, if I want to be absolutely pedantic, and I do, then body plans are disparate rather than diverse. “Disparity” in palaeontological/evo-devo parlance refers to how different two or more creatures are. Diversity means how many different creatures there are. Maybe I should do a post on that, actually.



Clausen S et al. (2010) The absence of echinoderms from the Lower Cambrian Chengjiang fauna of China: Palaeoecological and palaeogeographical implications. Palaeogeography, Palaeoclimatology, Palaeoecology 294:133-141

Smith AB et al. (2013) The oldest echinoderm faunas from Gondwana show that echinoderm body plan diversification was rapid. Nature Communications 4:1385

Archosaur calendar yay!

I’m a total sucker for good, accurate palaeoart, so I’m super excited for the art calendar that the fine people of Hell Creek put together for this year. Discoveries of dinosaurs, pterosaurs and other related beasts from 2012 featured in lovely pieces of art by artists who know their anatomy and shit. I strongly encourage you to take a look 😉

Here’s one of my favourite pieces from the calendar. This particular painting depicts the small Triassic dinosaur relative Diodorus scytobrachion (Kammerer et al., 2012) (art by Adrian Wimmer/yoult@deviantART):

Wheeeeee! ^.^



Kammerer CF et al. (2012) The first silesaurid dinosauriform from the Late Triassic of Morocco. Acta Palaeontologica Polonica 57:277-284


My heart is a bit broken.

On my way to work this morning, I saw a crow tearing into the corpse of a small bird, possibly a greenfinch from the brief look I got. I don’t know if the crow had killed it or if it had dropped dead all by itself, but in the end it doesn’t really matter.

I love crows and I know they are opportunistic bastards that will eat anything, but I’ve never actually seen one feast on a small bird. And small birds are my little feathered antidepressants. It’s like seeing your beloved cat dismember your pet hamster.

I’ll console myself with Andreas Trepte’s gorgeous photos of a non-dismembered greenfinch. Isn’t he a beauty!