The things you can tell from a pile of corpses…

I’m really late to this party, but I never claimed to be timely, and the thing about the reproductive habits of Fractofusus is too interesting not to cover.* Rangeomorphs  like Fractofusus are really odd creatures. They lived in that Ediacaran twilight zone between older Precambrian seas devoid of macroscopic animals and younger Cambrian seas teeming with recognisable members of modern groups. Rangeomorphs such as RangeaCharnia and Fractofusus itself have such a unique fractal body plan (Narbonne, 2004) that no one really knows what they are. Although they were probably not photosynthetic like plants or algae (they are abundant in deep sea sediments where there wouldn’t have been enough light), their odd body architectures are equally difficult to compare to any animal that we know.

Mitchell et al. (2015) don’t bring us any closer to the solution of that mystery; they do, however, use the ultimate power of Maths to deduce how the enigmatic creatures might have reproduced. Fractofusus is an oval-shaped thingy that could be anywhere from 1 cm to over 40 cm in length. Unlike some other rangeomorphs, it lay flat on the seafloor with no holdfasts or stalks to be seen. Fractofusus fossils are very common in the Ediacaran deposits of Newfoundland. Since there are so many of them, and there is no evidence that they were capable of movement in life, the researchers figured their spatial distribution might offer some clues as to their reproductive habits. A bit of seafloor covered in Fractofusus might look something like this (drawing from the paper):

clusters within clusters

(The lines between individuals don’t actually come from the fossils, they just represent the putative connection between a parent and its babies.)

Statistical models suggest that the fossils are not randomly distributed but clearly clustered: small specimens around medium-sized ones, which are in turn gathered around the big guys. Two out of three populations examined show these clusters-within-clusters; the third has only one layer of clustering, but it’s still far from random. As the authors note, the real populations they studied involve a lot more specimens than shown in the diagram, but they “rarefied” them a bit for clarity of illustration while keeping their general arrangement.

The study looked not only at the distances between small, medium and large specimens, but also directions – both of where the specimens were and which way they pointed. If young Fractofusus spread by floating on the waves, they’d be influenced by currents in the area. It seems the largest specimens were – they are unevenly distributed in different directions. In contrast, smaller individuals were clustered around the bigger ones without regard to direction. Small and large specimens alike pointed randomly every which way.

What does this tell us about reproduction? The authors conclude that the big specimens probably arrived on the current as waterborne youngsters, hence their arrangement along particular lines . However, once there, they must have colonised their new home in a way that doesn’t involve currents. Mitchell et al. think that way was probably stolons – tendrils that grew out from the parent and sprouted a new individual at the end. This idea is further strengthened by the fact that among thousands of specimens, not a single one shows evidence for other types of clonal reproduction – no fragments, and no budding individuals, are known. (Plus if a completely sessile organism fragments, surely the only way the pieces could spread anywhere would be by riding currents, and that would show up in their distribution.)

Naturally, none of this tells us whether Fractofusus was an animal, a fungus or something else entirely. Sending out runners is not a privilege of a particular group, and while there is evidence that the original founders of the studied populations came from far away on the waves, we have no idea what it was that floated in to take root in those pieces of ancient seafloor. Was it a larva? A spore? A small piece of adult tissue? Damned if we know. Despite what Wikipedia and news headlines would have you believe, there is nothing to suggest that sex was involved. It may have been, but the evidence is silent on that count. (Annoyingly, the news articles themselves acknowledge that. Fuck headlines is all I’m saying…)

While sometimes we gain insights into ancient reproductive habits via spectacular fossils like brooding dinosaurs or pregnant ichthyosaurs, this study is a nice reminder that in some cases, a lot can be deduced even in the absence of such blatant evidence. This was an interesting little piece of Precambrian ecology, and a few remarks in the paper suggest more to come: “Other taxa exhibit an intriguing range of non-random habits,” the penultimate paragraph says, “and our preliminary analyses indicate that Primocandelabrum and Charniodiscus may have also reproduced using stolons.”

An intriguing range of non-random habits? No citations? I wanna know what’s brewing!

***

*Also, I’ve got to write something so I can pat myself on the back for actually achieving something beyond getting out of bed. Let’s just say Real Life sucks, depression sucks worse, and leave it at that.

***

References:

Mitchell EG et al. (2015) Reconstructing the reproductive mode of an Ediacaran macro-organism. Nature 524:343-346

Narbonne GM (2004) Modular construction of Early Ediacaran complex life forms. Science 305:1141-1144

Wherein scientists DON’T spill blood over a Precambrian animal

Having gone through much of my backlog, I was going to post about pretty blue limpet shells, then I saw that people have been arguing over Haootia. You remember Haootia? It’s that Precambrian fossil with probable muscle impressions that looks kind of like a modern-day staurozoan jellyfish (living staurozoan Haliclystus californiensis by Allen Collins, Encyclopedia of Life; Haootia quadriformis reconstruction from Liu et al., 2014):

Liu_etal2014-haootia_recon

It’s pretty much a law of Precambrian palaeontology that no interpretation of a fossil can ever remain uncontested, and Haootia is no exception. Nonetheless, this might be the tamest debate anyone ever had about a Precambrian fossil, and it gives me all kinds of warm feels.

Good news: Miranda et al. (2015) don’t dispute that the fossils show muscle impressions. They don’t even dispute that they belong to a cnidarian-grade creature. However, they question some of the details of the muscular arrangement, which could have implications for what this creature was and how it functioned.

They don’t have much of an issue with the muscles that run along the stalk and arms. The main point of contention, as far as I can tell, is that the muscles that run around the body (called coronal muscles in modern jellies) are not that big in living staurozoans. Those are the muscles that regular jellyfish use to contract their bells while swimming, but staurozoans don’t swim and therefore don’t need huge coronal muscles.

By Liu et al.‘s (2014) reconstruction (see above), Haootia has pretty massive coronal muscles. Miranda et al. (2015) wonder whether this was really the case, or the deformation of the fossils combined with the subconscious influence of regular jellyfish misled the original authors. They offer an alternative reconstruction, in which most of the body musculature runs up and down rather than around the body wall:

Miranda_etal2015-haootia_alt_recon

However, they also entertain the possibility that Liu et al.‘s reconstruction is correct – in which case, they note, Haootia must have done something with those muscles. Did jellyfish-like pulsations somehow form part of its feeding method? Could this even be a precursor to the jellyfish way of swimming? Who knows!

Liu et al. (2015) gave the most amazing response – much of their short reply to Miranda et al.‘s comments is basically thanking them for all the extra information and insight. They seem really pleased that biologists who study living cnidarians are taking an interest in their fossils, and enthusiastic about fruitful discussions in the future. (I concur. Biologists and palaeontologists need to talk to each other!)

They did take another, closer look at Haootia and maintain that they still see a large amount of musculature running around the body. So perhaps this peculiar Precambrian animal was doing something peculiarly Precambrian that has few or no parallels in modern seas. “We must keep in mind,” they write,  “that some, or maybe most, Ediacaran body plans and feeding strategies may have been specifically adapted to Ediacaran conditions.”

Either way, the whole exchange makes me very warm and fuzzy – I love to see scientists having constructive debates and learning from each other. (I also love that Miranda et al. thank Alex Liu in their acknowledgements; they were so obviously not out to tear one another down.) Plus both teams agree that we DO have a cnidarian-type creature from the Precambrian, and we DO have lovely lovely muscle impressions. Here’s to nice people, and to the slowly sizzling fuse of the Cambrian explosion! 🙂

***

References:

Liu AG et al. (2014) Haootia quadriformis n. gen., n. sp., interpreted as a muscular cnidarian impression from the Late Ediacaran period (approx. 560 Ma). Proceedings of the Royal Society B 281:20141202

Liu AG et al. (2015) The arrangement of possible muscle fibres in the Ediacaran taxon Haootia  quadriformis. Proceedings of the Royal Society B 282:20142949

Miranda LS et al. (2015) Is Haootia quadriformis related to extant Staurozoa (Cnidaria)? Evidence from the muscular system reconsidered. Proceedings of the Royal Society B 282:20142396

Because I couldn’t not post about Dendrogramma

And the deep sea surprises us yet again (photos of the type specimen of Dendrogramma enigmatica from Just et al. [2014]).

I totally ignored the original hype about these beasties. I saw them pop up on I Fucking Love Science the other day, read the headline, decided it was probably another annoyingly sensationalised news story about a moderately strange new species and went on with my life. (The fact that they kinda look like weird flatworms didn’t help) Well, now that I’ve seen the paper, I… nah, I don’t regret the decision to ignore the news story, because hyperbole like that headline about rewriting the tree of life drives me up the wall, but I am glad that I finally checked what the hype was all about.

It’s really cool, after all these years of humanity cataloguing the living world, to find something so weird that basically all we can say about it is that it’s an animal. At this point it’s not clear to me how much of that is genuine weirdness and how much is simply down to the lack of data. The organisms were found in bulk seafloor samples brought up from depths of 400 and 1000 m somewhere off Tasmania nearly thirty years ago, and they are apparently quite poorly preserved. There’s no DNA, though commenters on the PLoS article seem to think it might be possible to get some out of the specimens. (That would be nice!)

According to the authors’ description, the general organisation of Dendrogramma species can be discerned and is much like a cnidarian or a ctenophore – two basic germ layers with thick jelly in between, and a blind gut – but they appear to lack anything that would clearly identify them as a member of either group, such as comb rows or stinging cells. Because they appear to have only two germ layers, the authors conclude they are probably not bilaterians, but because they don’t have diagnostic features of any other kind of animal, and because there’s so much more we don’t know about them, they don’t feel brave enough to place them beyond that.

The beasties are made of a stalk and a flat disc; the mouth opens at the tip of the stalk and the gut extends into the disc, where it bifurcates repeatedly to form dozens of branches. Two comments on the PLoS website point out that this arrangement is a bit like a flatworm – many of which have a long pharynx that they can poke out to feed, and a highly branched intestine occupying most of the body (a lovely diagram and photo can be found in the bottom half of this page).

Superficially at least, it sounds possible that Dendrogramma‘s “stalk” is an extended pharynx. However, flatworms are bilaterians, and between their skin and their gut wall they are full of the tissues of the mesoderm, the third germ layer – muscles, simple kidneys, reproductive organs and quite a lot of cell-rich connective tissue. Just et al.‘s description of Dendrogramma states that the equivalent space in these creatures is filled with mesogloea, i.e. jelly with few or no cells. If Dendrogramma really lacks mesodermal tissues, then it wouldn’t make a very good flatworm! (The paper itself doesn’t discuss the flatworm option at all, presumably for similar reasons.)

Of course, the thing that piqued my interest in Dendrogramma is its supposed resemblance to certain Ediacaran fossils, specifically these ones. It would be awesome if we could demonstrate that the living and the fossil weirdos are related, since then determining what Dendrogramma is would also classify the extinct forms, but I’m not holding my breath on this count. The branching… whatevers in the fossils in question may look vaguely like the branching gut of Dendrogramma, but, as discussed above, so do flatworm guts. The similarity to the fossils may well have nothing to do with actual phylogenetic relatedness, which the authors sound well aware of.

Nature, helpful as always. >_>

It seems all we can do for the moment is wait for more material to come along, hopefully in a good enough state to make detailed investigations including genetic studies. My inner developmental biologist is also praying for embryos, but the gods aren’t generally kind enough to grant me these sorts of wishes 😛

I do quite like the name, though. Mmmmm, Dendrogramma. 🙂

***

Reference:

Just J et al. (2014) Dendrogramma, new genus, with two new non-bilaterian species from the marine bathyal of southeastern Australia (Animalia, Metazoa incertae sedis) – with similarities to some medusoids from the Precambrian Ediacara. PLoS ONE 9:e102976

Precambrian muscles??? Oooooh!

Okay, consider this a cautious squee. I wish at least some of those Ediacaran fossils were a little more obvious. I mean, I might love fossils, but I’m trained to squirt nasty chemicals on bits of dead worm and play with protein sequences, not to look at faint impressions in rock and see an animal.

Most putative animals from the Ediacaran period, the “dark age” that preceded the Cambrian explosion, are confusing to the actual experts, not just to a lab/computer biologist with a fondness for long-dead things. The new paper by Liu et al. (2014) this post is about lists a “but see” for pretty much every interpretation they cite. The problem is twofold: one, as far as I can tell, most Ediacaran fossils don’t actually preserve that much interpretable detail. Two, Ediacaran organisms lived at a time when the kinds of animal body plans we’re familiar with today were just taking shape. The Ediacaran is the age of ancestors, and it would be more surprising to find a creature we can easily categorise (e.g. a snail) than a weird beastie that isn’t quite anything we know.

Having said that, Liu et al. think they are able to identify the new fossil they named Haootia quadriformis. Haootia comes from the well-known Fermeuse Formation of New Foundland, and is estimated to be about 560 million years old. The authors say its body plan – insofar as it can be made out on a flat image pressed into the rock – looks quite a lot like living staurozoan jellyfish, with a four-part symmetry and what appear to be branching arms or tentacles coming off the corners of its body. The most obvious difference is that Haootia seems to show the outline of a huge circular holdfast that’s much wider than usual for living staurozoans.

However, the most exciting thing about this fossil is not its shape, but the fact that most of it is made up of fine, highly organised parallelish lines – what the authors interpret as the impressions of muscle fibres. The fibres run in different directions according to their position in the body; for example, they seem to follow the long axes of the arms.

(Below: the type specimen of Haootia with some of the fibres visible, and various interpretive drawings of the same fossil. Liu et al. is a free paper, so anyone can go and look at the other pictures, which include close-ups of the fibres and an artistic reconstruction of the living animal.)

If the lines do indeed come from muscle fibres, then regardless of its precise affinities, Haootia is certainly an animal, and it is probably at least related to the group called eumetazoans, which includes cnidarians like jellyfish and bilaterians like ourselves (and maybe comb jellies, but let’s not open that can of jellies just now). Non-eumetazoans – sponges and Trichoplax – do not have muscles, and unless comb jellies really are what some people think they are, we can be almost certain that the earliest animals didn’t either.

Finding Ediacaran muscles is also interesting because it gives us further evidence that things capable of the kinds of movement attributed to some Ediacaran fossils really existed back then. Of course, it would have been nicer to find evidence of muscle and evidence of movement in the same fossils, but hey, this is the Precambrian. You take what you get.

(P.S.: Alex Liu is cool and I heart him. OK, I saw him give one short talk, interviewing for a job at my department that he didn’t get *sniffles*, so maybe I shouldn’t be pronouncing such fangirlish judgements, but that talk was awesome. As I’ve said before, my fangirlish affections are not very hard to win 🙂 )

***

Reference:

Liu AG et al. (2014) Haootia quadriformis n. gen., n. sp., interpreted as a muscular cnidarian impression from the Late Ediacaran period (approx. 560 Ma). Proceedings of the Royal Society B 281:20141202

Oxygen and predators and Cambrian awesomeness (with worms!)

I didn’t plan to write anything today, but damn, Cambrian explosion. And polychaetes. I can’t not. Plus I’m going on holiday soon, so I might as well get something in before I potentially disappear off the internet. (Below: a Cambrian polychaete, Canadia spinosa, via the Smithsonian’s Burgess Shale pages.)

First, a confession.

I’m a bit of a coward about the Cambrian explosion.

Make no mistake, I love it. It’s fascinated me ever since I came across the heavily Stephen Jay Gould-flavoured account in The Book of Life. It’s an event that made the world into what it is today, with its complex ecosystems full of animals eating, cooperating or competing with each other. And it’s one of the great mysteries of palaeontology. What actually happened? What caused it? Why did it happen when it did? Why didn’t it happen again when animal life was nearly wiped out at the end of the Permian?

The problem is, I love it so much that I’m afraid to have an opinion about it. You have no idea how many times I wanted to discuss the big questions, only to shy away for fear of getting it wrong. Which is really kinda stupid, because no one has the one and only correct answer. Whether I’m qualified to comment on it is a different issue, but it wouldn’t be the first subject I comment on that I don’t fully understand.

So, here I take a deep breath and plunge into Sperling et al. (2013).

The abstract started by scaring me. It begins, “The Proterozoic-Cambrian transition records the appearance of essentially all animal body plans (phyla), yet to date no single hypothesis adequately explains both the timing of the event…” To which my immediate reaction was “why the fuck would you want a single hypothesis to explain it?” But luckily, they don’t. They actually argue for a combination of two hypotheses, which they think are more connected than we thought.

But let’s just briefly establish what the Cambrian explosion is.

I want to make this absolutely clear: it’s not the sudden appearance of modern animals out ot nowhere. It could be more accurately described as the appearance of basic body plans we traditionally classify as phyla, such as echinoderms, molluscs, or arthropods, in a relatively short geological period.

Doug Erwin (2011) trawled databases and literature to draw up a timeline of first appearances for animal phyla, and he found that they increase in number gradually over a period of 80 million years (see Erwin’s plot below).

Erwin2011-cumulativePhyla

Appearance of “phyla” also doesn’t equal appearance of modern animals, as Graham Budd has been known to emphasise (e.g. Budd and Jensen, 2000). For example, I already mentioned how none of the mid-Cambrian echinoderms recently described by Smith et al. (2013) would look familiar today. In fact, the modern classes of echinoderms, which include sea urchins, starfish and sea lilies, didn’t appear until after the Cambrian. Likewise, while there were chordates (our own phylum), and probably even vertebrates, in the Cambrian, such important vertebrate features as jaws or paired appendages were yet to be invented. (If memory serves, both of those inventions date to the Silurian.)

There is also a discussion to be had about the meaning and validity of concepts like a phylum or a body plan, but let’s not complicate things here. I have a paper to get to! 🙂

With that out of the way…

There is no doubt that something significant happened shortly before and during the Cambrian. Before the very latest Precambrian, fossils show little evidence of movement, of predation, or of the diverse hard parts that animals use to protect themselves or eat others today. All of these become commonplace during the Cambrian, establishing essentially modern ecosystems (Dunne et al., 2008).

There are many explanations proposed to account for the revolution. I’ve not the space (or the courage) to discuss them in any detail. If you’re interested, IIRC Marshall (2006) is a very nice and balanced review. (Link leads to a free copy.) However, we can discuss what Sperling et al. have to say about two of them.

The first hypothesis is oxygen, which likely became more abundant in the ocean towards the end of the Precambrian. That  could explain the timing, but maybe not the nature of the explosion. Oxygen levels impose a limit on the maximum size of animals, but what compels larger animals to “invent” more disparate body plans? (Also, on a side note, many Ediacaran organisms weren’t exactly tiny, so I’m not sure how much of a size limit there is in the first place.)

The second one is animal-on-animal predation (Sperling et al. prefer the term “carnivory”), which can lead to predator-prey arms races and therefore encourage the evolution of innovations like shells or burrowing or jaws that give one party an edge. This is a decent enough basis for body plan innovation, but it applies for any time and place with animals. So if carnivory is the explanation, why did the explosion happen when it did?

Because, Sperling et al. argue, carnivory and oxygen are linked.

I’m intrigued by their approach. They’re not looking at fossils in this study at all. (I always like it when palaeontology and the biology of the living join forces!) They are looking at oxygen-poor habitats in modern oceans. Specifically, they asked how low oxygen levels affect polychaete worm communities.

Why polychaetes? The authors give a list of reasons. One, polychaetes are really, really abundant on the seafloor, and particularly so in low-oxygen settings. Two, different species feed in almost every conceivable way from filtering plankton through chewing through sediment to flat out devouring other animals, and their feeding mode can usually be guessed even if you haven’t seen that particular species eat. Three, they are actually quite good at handling oxygen limitation. This is important because back in the Precambrian, all animals would have been well adapted to a low-oxygen environment, so a group that can tolerate the same may be the best comparison. (They do note that  a previous study of a single low-oxygen site that took other animals into account came up with similar results to theirs.)

They worked partly with pre-existing datasets that met a set of criteria designed to get a complete and unbiased view of local polychaete diversity. In total, they analysed data from 68 sites together featuring nearly a thousand species of worms. They also had some of their own data.

They categorised their study sites into four levels of oxygen deprivation, and counted numbers of carnivorous individuals and species at each site. They came to the conclusion that lack of oxygen basically makes carnivores disappear. The lowest-oxygen samples contained fewer carnivores on both the individual and species levels, and they were more likely to be devoid of predators altogether (# species plot from the paper below):

sperling_etal2013-fig2c

There are a couple of different ways in which lack of oxygen could limit predators. For example, the aforementioned size limit is one, because it’s good for a predator to be larger and stronger than its prey. But the biggest factor according to the authors is the energy required for an active predatory lifestyle. While a suspension feeder can sit in one place all day and only move to stuff a food-laden tentacle into its mouth, a predator has to find, subdue and eat its prey, which are all pretty expensive activities. Then it also has to digest a sudden, large meal, whereas the suspension feeder’s digestion works at a low and steady rate. Animals can get energy from a variety of metabolic processes, but by far the most efficient route requires oxygen. And that really sucks when you are a hunter who might need large amounts of energy at short notice.

Hmm…

Although I’m quite intrigued by the study, there are a couple of issues that bother me. For example, as far as I could tell, all of the study sites included in the analyses were low on oxygen. I would have liked to see them compared to “normal” sites, in particular because the trend in predator abundance wasn’t a neat straight upwards line. In fact, the least oxygen-deprived habitats appeared less predator-infested than slightly more oxygen-poor ones. What’s going on there?

In terms of interpretation in relation to the Cambrian, I also would have liked to see a comparison of the oxygen levels at their study sites to what’s estimated for the geological periods in question. I take it they just didn’t have precise enough estimates, because one of the things they discuss in the closing paragraph is the need to measure just how much oxygen went into the oceans during this late Precambrian oxygen increase.

And my semi-silly question is, how does this apply to “predators” who don’t run around chasing after and wrestling with prey? For example, sea anemones might be perfectly happy to eat large creatures. But they don’t really do much. They just sit and wait, and if a poor fish stumbles onto their sticky venomous tentacles, tough luck for it. Or there’s the unknown predator that drilled holes in late Precambrian Cloudina specimens (Bengtson and Zhao, 1992). Cloudina was sessile, the creature didn’t have to chase it… Predators such as these still have to cope with the energy demands of digesting sudden large meals, I suppose, so maybe the energetics idea still applies. And of course, if there’s no oxygen, large prey is less likely to be swimming around bumping into your tentacles.

Is this “the” explanation of the Cambrian explosion? Probably not, says the cynic in me. I highly doubt we’re done with that question. Is it a good explanation? Well, it is certainly evidence-based, and I like it that it tries to take different factors together and in context. What I don’t think it does is explain the uniqueness of the Cambrian. A thousand words or so ago, I mentioned the Permian extinction. That cataclysm very nearly left the earth devoid of animals. Afterwards, there was certainly enough oxygen for predators to thrive in the sea, and indeed they did, from sea urchins to ichthyosaurs. So why didn’t the first 40 million years of the Mesozoic era beget many new phyla the way the first 40 million years of the Palaeozoic did? Is that just an artefact of our classifications or was something really fundamentally different going on?

I ain’t Jon Snow, but when it comes to the Cambrian, I still feel like I know nothing…

***

References:

Bengtson S & Zhao Y (1992) Predatorial borings in Late Precambrian mineralized exoskeletons. Science 257:367-369

Budd GE & Jensen S (2000) A critical reappraisal of the fossil record of the bilaterian phyla. Biological Reviews 75:253-295

Dunne JA et al. (2008) Compilation and network analyses of cambrian food webs. PLoS Biology 6:e102

Erwin DH (2011) Evolutionary uniformitarianism. Developmental Biology 357:27-34

Marshall CR (2006) Explaining the Cambrian “explosion” of animals. Annual Review of Earth and Planetary Sciences 34:355-384

Smith AB et al. (2013) The oldest echinoderm faunas from Gondwana show that echinoderm body plan diversification was rapid. Nature Communications 4:1385

Sperling EA et al. (2013) Oxygen, ecology, and the Cambrian radiation of animals. PNAS 110:13446-13451

Aspidella on the move?

This is Aspidella:

(Peterson et al. [2003] via Palaeos)

The Internet tells me this is also Aspidella:

(Amy Campbell)

And so is this:

(Menon et al., 2013)

(How on earth did all of those things end up with the same name???)

Aspidella, you see, is one of those problematic Ediacaran fossils that may or may not belong to a single kind of organism, which may or may not be an animal. It’s an impression of something soft with a rather variable assortment of surface features, and hence it’s pretty hard to tell what made it, although the wide holdfast of some bottom-dwelling, filter-feeding animal is a popular opinion. This nice Charniodiscus specimen (Tina Negus via Wikipedia) explains why:

Seeing how fossils like these are one of our precious few sources of evidence on the early history of animals, any additional evidence to help us figure out what they were is awesome. It’s especially cool to find evidence of behaviour, because “behaviour” is something that only certain groups of organisms exhibit, and some of the candidates for Ediacaran thingies like this (e.g. fungi, lichens, microbial mats) specifically don’t.

In a short paper in Geology, Menon et al. (2013) argue that they have found such evidence in some Aspidella specimens from the mid-Ediacaran Fermeuse Formation of Newfoundland. There are two kinds of features they report on. First, there are shallow, short trails that look like whatever made the impressions slid or hopped along a soft sediment surface in short movements. Some of the trails show faint impressions of the radiating ridges some conventional Aspidella specimens possess (like the one below, taken from the paper):

They are fairly rare, the best bet for finding them being slabs of rock practically carpeted with Aspidellas. A couple of things indicate that they weren’t just made by some random current or mudslide sweeping hapless Aspidella creatures along. For one thing, even in a whole pile of Aspidella imprints, you’ll find only a few such trails. (Although that could be because most of the living creatures would have been firmly rooted to the sediment!) For another, neighbouring trails point in all kinds of random directions, so if it was a current, it must have been the most chaotic one in earth history.

The other kind of evidence is what looks like the “evolution” of vertical burrows, layers of sediment dipping downwards like there used to be something sitting on them that gradually relocated further up as more sand and mud accumulated around it. Of course, an animal sitting in the mud isn’t the only thing that can produce similar features, so the authors considered a few alternatives.

They didn’t find any signs of water or gas bubbles escaping. They also didn’t think the features looked like sediment slumping into a hole, which they actually experimented with by piling sand and mud on top of dissolving liquid capsules (laundry capsules?? :o). The dips produced by falling sediment get conspicuously shallower towards the top, which the fossil dips don’t seem to do, plus the latter also have round structures like small Aspidella on top. Personally, I find the photos of the fossil dips really hard to compare with the picture of the experimental dips, though. Here’s perhaps the best specimen they show alongside one of their experiments:

Yeah… I can kind of see where you’re coming from, but…

So the idea is that an animal lived with its rear end buried in the sediment and its feeding structures up in the water column. As the water brought in more sediment (the Fermeuse Formation is thought to be marine in origin), the unknown creature moved upwards to avoid complete burial. Eventually, it would die, leaving behind a stack of little dips indicating its previous seats, topped by a good old-fashioned Aspidella impression.

Interestingly, only small Aspidella are associated with these vertical traces. Did young and old Aspidella creatures live in different ways, or do larger specimens simply belong to a different organism?

The authors specifically think the Aspidella animal was cnidarian-like because other possible candidates such as sponges and giant moving protists haven’t been observed to move vertically through sediment. Only well-muscled creatures like sea anemones (and bilaterians, but there’s absolutely no reason to think this thing was a bilaterian) are known to do that.

Which is really pretty exciting – more Ediacarans directly associated with traces of movement! I maybe should have mentioned that the paper keeps going on about Retallack (2013), mainly to say that it was Wrong, but I thought it was interesting enough in its own right. The fact that it discusses signs of animal-like behaviour in a kind of fossil that’s also common in the Australian rocks reinterpreted by Retallack as terrestrial is kind of beside the point.

***

References:

Menon LR et al. (2013) Evidence of Cnidaria-like behavior in ca. 560 Ma Ediacaran Aspidella. Geology advance online publication 06/06/2013, doi: 10.1130/G34424.1

Peterson KJ et al. (2003) A fungal analog for Newfoundland Ediacaran fossils? Integrative and Comparative Biology 43:127-136

Retallack GJ (2013) Ediacaran life on land. Nature 493:89–92

Is Ediacara really stranded?

Heh, when I wrote a confused post about a paper by Greg Retallack that argues that classic Ediacaran fossils like Dickinsonia come from a terrestrial rather than an underwater environment, I said there’s sure to be responses. And I completely managed to miss the responses in the very same issue of Nature, apparently published online on the same day. *shameface* (I don’t think I got the commentary piece by RSS???)

One of them was actually quite nice to Retallack. L. Paul Knauth’s name doesn’t ring a bell, I suspect he’s the “geologist” out of the “palaeontologist and a geologist” the intro mentions. Of Retallack’s analysis itself, all he has to say is that Precambrian sediments can be very difficult to interpret, and one will need genuine expertise in fossilised soils ‘n’ stuff to evaluate Retallack’s claims. However, Knauth rejoices over the mere fact that there are unorthodox opinions like Retallack’s out in the open. In which he is certainly right – science wouldn’t go anywhere without disagreements.

The other commenter, Shuhai Xiao, is not so kind. (Him I’ve actually heard of; he’s published some seriously interesting stuff about Ediacaran fossils.) His commentary is kind of a polite way of saying “what a load of nonsense”. Like Knauth, he considers the evidence for the terrestrial origin of these rocks ambiguous, but he also emphasises features of the rocks that fairly unambiguously point to a marine environment. Funnily enough, he brings up geology that isn’t totally impenetrable to me as evidence, like a neat photo of Dickinsonia specimens on a slab of rock covered in nice symmetrical-looking ripples (the kind that forms under quiet waves). There’s also the fact that I forgot about when I wrote the other post: Dickinsonia itself is sometimes associated with crawling traces. Whatever that thing was and wherever it lived, it ain’t no lichen.

That’s reassuring in terms of not standing my worldview on its head, but I really wish Xiao had been less vague about some of his points. For instance, “the isotope signatures of carbonate nodules in the Ediacara Member can be accounted for by post-depositional alterations that do not involve pedogenic processes,” he says, with no further explanation and no citations. I’m thus far on Xiao’s side, but that doesn’t turn the above into a good argument…

Oh well. Let the debate rage on 🙂

(As of yet, no citations of Retallack’s paper on Google Scholar. We’ll definitely check back later. If I remember…)

Ediacaran Underground

As you may have guessed from my blog title, I’m fascinated by the early history of animals. Part of the problem with this early history is that its fossil record is extremely sketchy, extremely difficult to interpret, or both. One of the things that marks the diversification of animals late in the Ediacaran (the last period of the Precambrian) and even more during the Cambrian explosion, is the appearance of burrows and other trace fossils. Marks on the seafloor don’t have to be made by what we usually think of as “complex” animals, though. Burrowing sea anemones are well known, and even single-celled creatures can plough a track in the sediment. That makes things rather complicated when you are looking for the first signs of complex bilaterian animals in the rocks.

Pecoits et al. (2012) are convinced that the trace fossils they found in Uruguay are such a sign, perhaps indeed the oldest. The gently meandering little burrows they report in Science are shaped much like the burrows made by some modern molluscs and annelid worms, possessing features that are hard to explain with a rolling protist or a simple animal. Among other things, they have minute indentations in their walls that may indicate the places where leg-like body parts pushed against the sediment as the animal pulled itself along.

The mysterious burrowers’ path was relatively simple, meandering in broad sine waves that may preserve the unknown creature’s search for food. Burrows often cross, suggesting that their makers made no effort to avoid each other. However, they sometimes disappear and reappear a few millimetres later, as if the animal made a detour upwards or downwards. The few abrupt turns, combined with the width of the burrows, indicate that the creature who left these traces was small, less than a centimetre long.

These burrows – if they are indeed that – are somewhere between 585-600 million years old, at least 30 million years older than the oldest uncontested bilaterians. My question, though, is are they? Bilaterian burrows, I mean. It’s a good thing I double-checked about trace-making protists, since it turns out that the protists in question leave tracks that have supposedly bilaterian characteristics, like consisting of two ruts on either side of a central ridge (Matz et al., 2008). This is one of the similarities the new paper draws between modern bilaterian burrows and their Precambrian precursors! (The weirdest thing is they cite Matz et al. but kind of dismiss the eerily bilaterian character of protist traces…)

Pecoits et al. (2012) do take some time to argue against a protist or non-bilaterian origin of the burrows. There are the little indentations that may have come from something like a worm’s parapodia but are perhaps more difficult to reconcile with a simple rolling ball of cytoplasm. There are also the disappearances and reappearances that indicate the creature moving up and down levels. The authors also argue that the burrows are definitely burrows – i.e. actually under the sediment surface -, though I’m not sure this follows from their evidence.

Then again, they’re the experts here, I’m just a geologically challenged biologist looking at pictures of grooves in rocks… The disappearance-reappearance thing does seem to imply that whatever left these fossils could burrow. (Unless it suddenly hopped off the bottom and landed nearby? And why can’t protists burrow anyway? We didn’t even know they made fake animal traces until a few years ago… I think I’m beginning to sound silly…)

As far as arguments for a bilaterian trace-maker go, a lot is made of the infillings in the burrows, and of the parts that look like the roof collapsed after the animal moved on, but honestly I can’t see what they are talking about in the photos, so I’ll stay on the safe side and reserve judgement there 🙂

And here I meander off track (terrible pun fully intended)

Aaaaanyway, let’s assume they are right, and there’s a reasonably complex worm behind these burrows.

That would be awesome.

However, it poses some questions. In fact, it poses the same questions my friend Kimberella does. I’ve been ruminating about this since I wound up explaining what we know of the bilaterian ancestor to some random guy on the internetz. Let me pour out the contents of my brain here, and let’s hope they make sense >_>

Kimberella. This creature is at the very least a bilaterian, but probably not too far off from molluscs. Its amazing fossil record includes incontrovertible evidence that it could move around and graze on whatever it ate (microbes, probably) by scraping it off the seafloor. It was covered in a knobby armour – fairly flexible and probably not made of a single peace, but definitely a shell of sorts. That’s one of the things that suggest ties to molluscs. Either way, something that we can identify as a member of a subgroup of bilaterians must postdate the bilaterian common ancestor by a fair bit – all those lineages needed time to split and evolve their recognisable body plans.

Palaeontologists and developmental biologists (Budd and Jensen, 2000; Erwin and Davidson, 2002) made a good case in arguing that the last common ancestor of bilaterians must have been small and simple. We know this creature must have predated Kimberella by some time – and this is where we run into problems. One of the strongest arguments for a small and simple bilaterian ancestor is the paucity of Precambrian trace fossils. Large and complex bilaterians make a big mess of seafloor sediment. They dig into it, they walk over it, they churn it up and eat it and spit it out. Nonetheless, the Precambrian is full of virtually undisturbed microbial mats, an unexploited bonanza for any bilaterian with the means to graze. So the conclusion is that large, complex bilaterians must have been rare or non-existent. But, Kimberella? Burrows of a large-and-complex bilaterian* that predate Kimberella by 30 million years?

Something odd is going on here.

I suppose the question could be put as: if these creatures were around in the late Precambrian, why weren’t there more of them? (And where are the bodies?) Why didn’t they swarm out and eat all the microbial mats that made the preservation of many Ediacaran fossils possible (Narbonne, 2005)? Kimberella was doing its best to graze them off the face of the earth, yet this same type of preservation is common even in the formations everyone’s favourite proto-mollusc comes from.

Too little oxygen? But Kimberella is large, relatively compact and partly covered in armour. It’s the sort of creature that we’d expect to have a specialised respiratory system even in an oxygen-rich modern sea, so at least one animal clearly solved this problem…

I suppose it all comes back to what caused the Cambrian explosion, which is a tough question. (Marshall [2006] is a pretty nice review if memory serves.) If we figure out why molluscs and worms and other bilaterians didn’t take over the oceans long before the Cambrian, we’ll have figured out why they did so in the Cambrian.

I’m not sure that did make sense in the end, but I’m glad I could get it off my chest 😀

***

*A centimetre may not sound very large, but a pretty big percentage of the animal kingdom comes nowhere near it in size.

***

References:

Budd GE & Jensen S (2000) A critical reappraisal of the fossil record of the bilaterian phyla. Biological Reviews of the Cambridge Philosophical Society 75:253-295

Erwin DH & Davidson EH (2002) The last common bilaterian ancestor. Development 129:3021-3032

Marshall CR (2006) Explaining the Cambrian “explosion” of animals. Annual Review of Earth and Planetary Sciences 34:355-384

Matz MV et al. (2008) Giant deep-sea protist produces bilaterian-like traces. Current Biology 18:1849-1854

Narbonne GM (2005) The Ediacara biota: Neoproterozoic origin of animals and their ecosystems. Annual Review of  Earth and Planetary Sciences  33:421-442

Pecoits E et al. (2012) Bilaterian burrows and grazing behavior at >585 million years ago. Science 336:1693-1696

Much ado about nothing

I am disappointed.

I have a soft spot for Kimberella, one of the few Precambrian animals that we can identify with reasonable precision. (Not to mention its pretty name! :D) Our love affair started before I became involved with biomineralisation, which might have contributed to the fact that I totally overlooked Ivantsov (2009).

(Image: Ivantsov’s Kimberella, rendered by the masterful hands of Nobu Tamura. From Wikipedia.)

The paper shows up on Kimberella‘s lovely Wikipedia page as a citation for the following:

The deformation observed in elongated and folded specimens illustrates that the shell was highly malleable; perhaps, rather than a single integument, it consisted of an aggregation of (mineralized?) sclerites.

These days when I’m >this< close to dreaming about biominerals at night, this jumped out at me like a giant neon sign. What? A mineralising animal that old? (I think this was also before I saw Coronacollina.) So I downloaded the paper, and eventually got round to reading it, and…

Pfft.

It’s an alright piece of scientific literature, and it’s got lots of lovely pictures of Kimberella fossils (though Fedonkin et al. [2007] already had a ton of those). I would have been happy about it but for the fact that it totally flopped on the mineral thing. I thought that, you know, Ivantsov had some evidence to suggest that those bumps on the creature’s back were originally made of mineral stuff. And, indeed, his abstract quite confidently states not only that they were mineralised but also the specific mineral:

The fossil material shows that Kimberella had hard sclerites, probably of aragonite…

His reasoning? Let me quote…

The alternation of nodes and coarse folds in the central zone of the fossil may be explained by assuming that the nuclei of nodes were clumps of hard substance, which rapidly destroyed after the death of the animal. Aragonite, which obviously had no chances to be preserved in the terrigenous sediment, which, in addition, was saturated with hydrogen sulfide (Gehling, 2005), could have been such a substance.

I mean, really? They “could have been” made of aragonite because they disappeared? It’s like there is no other tough-ish material that can be destroyed after an animal dies. And he doesn’t go any deeper than that – no discussing/excluding other possibilities, nothing. He just leaves it there.

People, can you please not claim things in your abstracts that you then barely discuss, let alone demonstrate, in the paper?

***

References:

Fedonkin MA et al. (2007) New data on Kimberella, the Vendian mollusc-like organism (White Sea region, Russia): palaeoecological and evolutionary implications. In: Vickers-Rich P & Komarower P (eds). The Rise and Fall of the Ediacaran Biota. Geological Society, London, Special Publications 286:157-179

Ivantsov YA (2009) New reconstruction of Kimberella, problematic Vendian metazoan. Paleontological Journal 43:601-611

The shadow of a skeleton

Sponges are in a generous mood these days, as far as exciting discoveries are concerned! First Otavia breaks the record for oldest known animal, and now Coronacollina (what a pretty name!) shows up with what looks like the oldest hard skeleton in the animal kingdom.

Hard skeletons* are a real success story in the history of life. From the tough organic support structures of trees to our own strong and versatile bones, they’ve revolutionised (or, in the case of trees, pretty much created) ecosystems. (We also owe them some gorgeous landscapes.) Skeletons really came into fashion during the Cambrian explosion, when incorporating minerals into shells, spikes and other hard parts became commonplace among animals. However, there are a few examples of animals with hard parts that are older, mainly from the very end of the Ediacaran period just before the dawn of the Cambrian. Our spiny new friend does one better than those, hailing from the heyday of Ediacaran creatures.

Coronacollina acula (Clites et al., 2012) is described as a smallish creature similar to the Cambrian sponge Choia. Its 300+ specimens were preserved as imprints that show every sign of having come from a fairly solid animal. The body is kind of cone-shaped with what appears to be threefold symmetry. Most intriguing are the traces of long, thin spikes that radiate from the main body of many specimens. There are up to four of them, fewer than Choia had, and they were clearly made of a hard material in life: the grooves they left are straight as arrows, narrow and sharply defined, unlike a trace left by a soft structure. Like the more numerous spikes of Choia, they may have acted as stabilisers/struts to keep the living sponge from being upended by waves.

(From my perspective, it’s a pity that only the imprints were preserved. I have an occupational interest in biomineralisation, so I’d really like to know what the spicules were originally made of. If Coronacollina is a relative of Choia, odds are they were either organic or, if they were mineralised at all, made of silica. Interestingly, the authors bet on some sort of mineral because the spicules broke so often, as though they were quite brittle. I would’ve thought that mineralised structures would leave more than imprints, but apparently the chances of silica or calcium carbonate skeletons being preserved in coarse sandstone aren’t that great. You learn something every day…)

Clites and colleagues consider the creature important for two reasons: first, because it is the oldest known example of an animal with a hard skeleton. The shadows of its long thin spikes in the rocks foreshadow, so to speak, of the age of skeletons that came with the Cambrian. Second, finding an Ediacaran animal that can be related to something outside its own weird contemporaries is always worth a little celebration! 😉

***

Note:

*The word “skeleton” is used in a very loose sense here. It includes any hardened structure that gives support and/or protection to some part of an organism. Bones, shells, armour plates, teeth, perhaps even the protein meshwork that gives bath sponges shape, can belong here.

***

Reference:

Clites E. et al. (2012) The advent of hard-part structural support among the Ediacara biota: Ediacaran harbinger of a Cambrian mode of body construction. Geology advance online publication (doi: 10.1130/G32828.1)